VC-X


Vibration Cell

While my initial intrest in this type of system came from "Joe Cell" research and experiment with Joe Cells, the information contained in this document, is not based on the same Orgone principles as the traditional "Joe Cell". It is based on a tube vibration system which can excite water. I have no experience in using the water as a medium of intelligent manifesting, and have considered "Y factor" a problem for most practical powering systems, rather then a desirable interaction. The main goal has been simply to assist running an engine using vibration science to reduce inertia, increase power, and raise gas mileage.

Comprehensive Document - Vibration Tube Design


Cell Photo


1 - The best V Cell, would have a perfect wavelength to fit each tube, such that there is a perfect 2 x or 4 x down shift relationship towards the next inner and outer tube
2 - The tube accuracy should not be greater then .001" as common machinist tools do not exist to lathe any more accurately, so final charts must be only to .001 digit placement for the machinist.
3 - The smallest wavelength should remain about the thickness of the tube or about .064" or greater if possible
4 - The polygon pattern on the tubes ends should be divisible by 2
5 - Tubes can be pushed to resonate off the center of their meat slightly, to make use of factory stock tubes


VC-Basic

Wavelength Coupling Spread Sheet

This kind of spread sheet can be used to spot natural 2x or 4x down shift functions between the different tube diameters.
The top line is the polygon structure. The first entry block is for a 12 sided polygon placed on a 4" tube.
Below this is another block for a 3" tube, below that for a 2" tube, and the bottom line is a 1" tube.
The 1" tube will not be up shifting so there is only one line of data for it, just it's FS length.

Block Layout:                                                  Block Organization:

      1     FS [Fractal Segment Length]                          Tube 4"
      1/4  FS                                                                 Tube 3"
      1/2  FS                                                                 Tube 2"
                                                                                   Tube 1"

      12x       16x       18x       20x       22x       24x       26x       28x       30x       32x       34x       36x       38x       40x       42x       44x       46x
 1.018453 0.767680 0.683306 0.615570 0.560009 0.513621 0.474312 0.440580 0.411320 0.385697 0.363076 0.342958 0.324950 0.308737 0.294063 0.280720 0.268534
0.254613 0.191920 0.170826 0.153892 0.140002 0.128405 0.118578 0.110145 0.102830 0.096424 0.090769 0.085739 0.081237 0.077184 0.073516 0.070180 0.067133
0.509226 0.383840 0.341653 0.307785 0.280004 0.256810 0.237156 0.220290 0.205660 0.192849 0.181538 0.171479 0.162475 0.154368 0.147031 0.140360 0.134267

















0.759634 0.572590 0.509657 0.459135 0.417694 0.383094 0.353775 0.328616 0.306791 0.287680 0.270808 0.255802 0.242370 0.230277 0.219333 0.209381 0.200291
0.189908 0.143148 0.127414 0.114784 0.104424 0.095774 0.088444 0.082154 0.076698 0.071920 0.067702 0.063951 0.060593 0.057569 0.054833 0.052345 0.050073
0.379817 0.286295 0.254829 0.229568 0.208847 0.191547 0.176888 0.164308 0.153396 0.143840 0.135404 0.127901 0.121185 0.115139 0.109666 0.104690 0.100146

















0.500815 0.377500 0.336009 0.302701 0.275379 0.252568 0.233238 0.216651 0.202263 0.189663 0.178539 0.168646 0.159791 0.151818 0.144603 0.138041 0.132049
0.125204 0.094375 0.084002 0.075675 0.068845 0.063142 0.058310 0.054163 0.050566 0.047416 0.044635 0.042162 0.039948 0.037955 0.036151 0.034510 0.033012
0.250407 0.188750 0.168005 0.151350 0.137690 0.126284 0.116619 0.108326 0.101131 0.094832 0.089270 0.084323 0.079896 0.075909 0.072301 0.069021 0.066025

















0.241996 0.182409 0.162361 0.146266 0.133064 0.122042 0.112702 0.104687 0.097734 0.091646 0.086271 0.081491 0.077212 0.073359 0.069873 0.066702 0.063807

Progression

Starting at the 12x polygon 4" tube, upper left block of numbers, we slide down and notice the 1/2x length in red, also matches the 18x 3" tube 1x FS to 3 digits accuracy.
Next we drop down to the 1/2x position and notice, on the 24x there is another wavelength match.
Two more jumps are found off this one now, to the one inch tube, one for a 4x down shift at 46x polygon, and another on the 24x polygon, both likely close enough to work.
Because the 46x polygon has a wavelength of .063807 and this rounds off to .064" for the machinist, this is probably about as far down in wavelength we care to go.

This is the the most basic, perfect down shift practical, I see in the numbers. It is an overall down shift of  2 x 2 x 4 = 16 x [across to tops of the tubes].
The frequencies perfectly fit the tubes! I did not find any matches on smaller polygons worth mentioning, as most would be pushing the vibration off the tubes edges to fit.

Tube Length Spreadsheet

The next spreadsheet, is to calculate some possible tube lengths for these polygons, and also see how far off center we need to push the tubes vibration from the center of the mass.
As I rounded off the smallest wavelength to .063" I noticed the deviation from center all went negative a further distance, then if I round off to .064" they all go positive by a lot less.
.064" is the best vibrational fit  across all the tubes. The deviation line shows how far off of center we are pushing the tube to vibrate up.
Min and Max represent the inner and outer edges of the tubes meat, where the vibration will then totally miss the tube.
Our deviation appears to be acceptable, with this choice of wavelengths and tubes.

Min 0.000000 0.000000 0.000000 0.000000
Center 0.065000 0.065000 0.065000 0.065000
Max 0.130000 0.130000 0.130000 0.130000





Deviation 0.002833 0.026292 0.013490 0.021432
New Center 0.062167 0.038708 0.051510 0.043568
New Diam 0.937833 1.961292 2.948490 3.956432
Wave Chg 0.000193 0.003432 0.002343 0.005547
Center Seg 0.063807 0.252568 0.509657 1.018453






Polygon 46x Polygon 24x Polygon 18x Polygon 12x
Cell 8             1”              2”             3”              4”
1x 0.064 0.256 0.512 1.024
2x 0.128 0.512 1.024 2.048
3xP 0.192 0.768 1.536 3.072
4x 0.256 1.024 2.048 4.096
5xP 0.320 1.280 2.560 5.120
6x 0.384 1.536 3.072 6.144
7xP 0.448 1.792 3.584 7.168
8x 0.512 2.048 4.096 8.192
9x 0.576 2.304 4.608 9.216
10x 0.640 2.560 5.120 10.240
11xP 0.704 2.816 5.632 11.264
12x 0.768 3.072 6.144 12.288
13xP 0.832 3.328 6.656 13.312
14x 0.896 3.584 7.168 14.336
15x 0.960 3.840 7.680 15.360
16x 1.024 4.096 8.192 16.384
17xP 1.088 4.352 8.704 17.408
18x 1.152 4.608 9.216 18.432
19xP 1.216 4.864 9.728 19.456
20x 1.280 5.120 10.240 20.480
21x 1.344 5.376 10.752 21.504
22x 1.408 5.632 11.264 22.528
23xP 1.472 5.888 11.776 23.552
29xP 1.856 7.424 14.848 29.696
31xP 1.984 7.936 15.872 31.744
37xP 2.368 9.472 18.944 37.888
41xP 2.624 10.496 20.992 41.984
43xP 2.752 11.008 22.016 44.032
47xP 3.008 12.032 24.064 48.128
53xP 3.392 13.568 27.136 54.272
59xP 3.776 15.104 30.208 60.416
61xP 3.904 15.616 31.232 62.464
67xP 4.288 17.152 34.304 68.608
71xP 4.544 18.176 36.352 72.704
73xP 4.672 18.688 37.376 74.752
79xP 5.056 20.224 40.448 80.896
83xP 5.312 21.248 42.496 84.992
89xP 5.696 22.784 45.568 91.136
97xP 6.208 24.832 49.664 99.328
101xP 6.464 25.856 51.712 103.424
103xP 6.592 26.368 52.736 105.472
107xP 6.848 27.392 54.784 109.568
109xP 6.976 27.904 55.808 111.616
113xP 7.232 28.928 57.856 115.712
127xP 8.128 32.512 65.024 130.048
131xP 8.384 33.536 67.072 134.144
137xP 8.768 35.072 70.144 140.288
139xP 8.896 35.584 71.168 142.336
149xP 9.536 38.144 76.288 152.576
151xP 9.664 38.656 77.312 154.624
157xP 10.048 40.192 80.384 160.768
163xP 10.432 41.728 83.456 166.912
167xP 10.688 42.752 85.504 171.008
173xP 11.072 44.288 88.576 177.152
179xP 11.456 45.824 91.648 183.296
181xP 11.584 46.336 92.672 185.344
191xP 12.224 48.896 97.792 195.584
193xP 12.352 49.408 98.816 197.632
197xP 12.608 50.432 100.864 201.728
199xP 12.736 50.944 101.888 203.776






Now from the table above, choose a set of lengths having the qualities you desire.
Consider both even down shift length drop the frequency again, and prime counts hold the higher fractal consistently.
I have omitted many possible numbers in favor of the primes on the first two tubes.
However do not feel limited. It is possible to now make a cell with all 4 tubes the exact same length if the chart above is completed.

Look at the number 1.024" On each tube. 4" 16x   -   3"  4x    -   2"  2x -  1"  1x
A cell built like this is going to work, but the center tube will down shift 16x before the energy hits the 2nd tube, where it will now up shift back to 2x???
This is likely not a desirable pattern for creating Aetheric pressure, however the tubes will have perfect alignment of the waves down them top to bottom.

VC-16



Polygon 46x Polygon 24x Polygon 18x Polygon 12x
Cell 8             1”             2”              3”             4”
89xP 5.696


23xP
5.888

13xP
6.656
7xP


7.168

Notes:
All prime stacks used, for square pattern frequency alignment.
After assembly, the tubes should couple well all the way to the bottom end!

VC-128



Polygon 46x Polygon 24x Polygon 18x Polygon 12x
Cell 9             1”             2”             3”             4”
89xP 5.696


23xP
5.888

14x

7.168
8x


8.192

Notes:
Now stretching the 2 outer tubes a bit to increase the final down shift wavelength.
An 8x will down shift 8x! Shooting the cell up to a pure 128x harmonic.




Dave L
12 / 27 / 2011
www.ResonantFractals.org


Back To Light Being Index